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Abstract

Background

This is a pilot proof-of-concept study to evaluate the utility of a custom 15-gene circulating

tumor DNA (ctDNA) panel as a potential companion molecular next-generation sequencing

(NGS) assay for identifying somatic single nucleotide variants and indels in non-small-cell

lung cancer (NSCLC) patients. The custom panel covers the hotspot mutations in EGFR,

KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1,

NTRK2 and NTRK3 genes which serve as biomarkers for guiding treatment decisions in

NSCLC patients.

Method

The custom 15-gene ctDNA NGS panel was designed using ArcherDX Assay Designer. A

total of 20 ng or 50 ng input ctDNA was used to construct the libraries. The analytical perfor-

mance was evaluated using reference standards at different allellic frequencies (0.1%, 1%,

5% and parental). The clinical performance was evaluated using plasma samples collected

from 10 treatment naïve advanced stage III or IV NSCLC patients who were tested for tissue

EGFR mutations. The bioinformatics analysis was performed using the proprietary Archer

Analysis Software.

Results

For the analytical validation, we achieved 100% sensitivity and specificity for the detection

of known mutations in the reference standards. The limit of detection was 1% allelic
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frequency. Clinical validation showed that the clinical sensitivity and specificity of the assay

for detecting EGFR mutation were 83.3% and 100% respectively. In addition, the NGS

panel also detected other mutations of uncertain significance in 6 out of 10 patients.

Conclusion

This preliminary analysis showed that the custom 15-gene ctDNA NGS panel demonstrated

good analytical and clinical performances for the EGFR mutation. Further studies incorpo-

rating the validation of other candidate gene mutations are warranted.

Introduction

Non-small cell lung cancer (NSCLC) represents the most common type of lung cancer which

accounts for approximately 11% of all cancer types in Malaysia [1]. Nearly 90% of lung cancer

patients in Malaysia are diagnosed with stage III or IV disease, and have poor 5-year overall

survival of about 8% [2]. While PD-1/CTLA-4 inhibitors are recommended as mainstay ther-

apy for patients with overexpression of PD-L1 protein, the role of PD-L1 as a predictive bio-

marker of response remains suboptimal, as emerging evidences suggested that a subset of

PD-L1 negative patients respond to the treatment [3]. As such, combination of mutational

profiling and PD-L1 expression may serve as better predictive biomarkers of response and

warrants further investigation [4].

In recent years, numerous targeted therapies have been approved by US Food and Drug

Administration (FDA) for treating NSCLC with actionable mutations, and have shown pro-

longed survival. These include gefitinib, ertlotinib, or osimertinib for EGFR mutations; combi-

nation of dabrafenib and trametinib for BRAF mutations; crizotinib, alectinib and lorlatinib

for ALK/ROS gene fusions; larotrectinib for NTRK gene fusions; and Enhertu for ERBB2 muta-

tions. To truly enable precision oncology, National Comprehensive Cancer Network (NCCN)

and US FDA have recommended biomarker testing for genetic alterations in at least seven

cancer genes (EGFR, ALK, RET, ROS1, MET, BRAF, and NTRK) for guiding treatment deci-

sions in NSCLC [5–7]. Also, the consensus statement on molecular testing has been made

available to guide the treatment strategy for NSCLC in Malaysia [8]. As the acquisition of hot-

spot DNA point mutations in the ALK, RET, ROS1, and NTRK genes confers drug resistance,

molecular testing of these hotspot mutations in conjunction with fusion gene assessment via

fluorescence in situ hybridization (FISH) or transcriptomic-based methods is crucial in the

field of precision oncology [9]. As the number of approved targeted therapies continues to

expand, it is therefore imperative to incorporate multigene panel testing as a routine compan-

ion diagnostic tool to broaden therapeutic options for cancer patients.

Tumor tissue biopsy is the gold standard for routine pathological assessment and molecular

testing for lung cancer patients. However, performing a tissue biopsy can sometimes lead to

complications, a single tumor biopsy may not truly represent a heterogenous tumor sample,

and nearly 30% of the biopsied tissues are inaccessible or contain insufficient material to sup-

port biomarker testing [10, 11]. As such, noninvasive identification of tumor-associated muta-

tions through body fluids such as blood represents an attractive alternative to tissue-based

methods. In recent years, the advent of multiplex real-time PCR, droplet digital PCR and next-

generation sequencing (NGS) have enabled detection of mutations in circulating tumor DNA

(ctDNA). Typically, ctDNA are short fragment DNA (range 150–180 bp) released from apo-

ptotic or necrotic tumor cells into the circulating blood and serve as surrogate markers for
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molecular oncology testing. Liquid biopsies not only allow molecular assessment to be per-

formed in patients whose tissue biopsies are inaccessible or inadequate, but also allow detec-

tion of acquired drug-resistance mutations in refractory or relapsed patients and facilitate re-

adjustment of treatment regimen upon disease progression and lead to improved treatment

outcome [11–13].

Precision oncology has revolutionized cancer care as evidenced by the growing list of bio-

marker guided targeted therapies for solid tumors including NSCLC [14]. It is therefore of

clinical importance to develop a robust and affordable molecular diagnostic tool that is capable

of screening multiple gene mutations in a single assay. Molecular testing of multiple gene tar-

gets becomes more cost-effective and time efficient with NGS than sequential testing with sin-

gle-gene approaches. Although NGS has been validated as a promising approach to detect

mutations in formalin-fixed paraffin embedded (FFPE) NSCLC samples at reduced cost and

faster turnaround time relative to single gene testing approaches [15], development of a robust

assay for detecting mutations in ctDNA remains challenging. Some studies showed excellent

concordance between mutations detected in tumor tissue and ctDNA (>80%) [16–20], whilst

some studies found lack of concordance [21–23]. Within this context, our study aims to

develop and validate the clinical utility of a custom 15-gene NGS panel for detecting clinically

significant mutations in ctDNA in advanced stage III or IV NSCLC patients.

This custom 15-gene NGS panel covers the activating and drug resistance hotspot DNA

point mutations and indels in EGFR, KRAS, NRAS, BRAF, PIK3CA, ERBB2, MET, KIT,

PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2 and NTRK3 genes which serve as biomarkers for

guiding treatment decisions in NSCLC patients. The panel may also guide potential treatment

with mobocertinib, amivantamab-vmjw (EGFR exon 20 insertion mutations), sotorasib (KRAS
G12C), osimertinib (EGFR T790M), erlotinib, dacomitinib, gefitinib, afatinib, osimertinib

(EGFR exon 19 deletion or exon 21 L858R), afatinib (EGFR: S768I, L861Q, and/or G719X),

combination of dabrafenib and trametinib (BRAF V600E), tepotinib, capmatinib (MET exon

14 skipping alteration), and ado-trastuzumab emtansine, trastuzumab deruxtecan (ERBB2
mutations). In addition, the NGS panel also covers secondary resistance mutations such as

fusion mutations in MET, RET, ALK, ROS1, NTRK1, NTRK2, or NTRK3 genes for which

matched approved therapies are available. The selected hotspot mutations could be used to

guide treatment with pralsetinib or selpercatinib targeting RET gene fusions; entrectinib or

Larotrectinib targeting NTRK-positive tumors; crizotinib, ceritinib, lorlatinib, brigatinib, or

alectinib targeting ALK-positive tumors; crizotinib, ceritinib, or lorlatinib targeting ROS1-pos-

itive tumors. The remaining genes mutations in NRAS, KIT, PIK3CA, and PGFRA have been

observed in NSCLC patients [24–27] and are included in the NGS panel as exploratory predic-

tive biomarkers.

Materials and methods

Ethics statement

The ethics approval for this study was obtained from Sunway Medical Centre Independent

Research Ethics Committee (Ethic Reference Number: SREC 007/2018/FR). All the patients

were consented for data and blood sample collection for NGS analysis.

Panel design

The custom 15-gene ctDNA NGS panel which selectively covered the hotspot regions of 15

clinically significant genes implicated in NSCLC (i.e. EGFR, KRAS, NRAS, BRAF, PIK3CA,

ERBB2, MET, KIT, PDGFRA, ALK, ROS1, RET, NTRK1, NTRK2, NTRK3; details as listed in S3

Table) was designed using ArcherDX Assay Designer (Archer, USA). The selected hotspot
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point mutations or indels serve as predictive biomarkers for targeted therapies approved by

the FDA or already listed in the NCCN guidelines.

Clinical samples

In this pilot study, a total of 10 patients in Sunway Medical Centre with newly diagnosed stage

III or IV NSCLC and tested for tissue EGFR mutation [EGFR positive (n = 6); EGFR negative

(n = 4)] were recruited into this study. All the blood samples were taken within 1-month from

the date of tissue biopsy. A total of 20 ml peripheral blood samples was taken from eligible

patients before the initiation of first line treatment. The blood samples were collected into

Cell-Free DNA CT™ tube (Streck, USA) and processed within 4 hours post-collection. The

plasma fraction was separated from the blood cells by two consecutive rounds of centrifugation

for 10 min at room temperature, at 1600 g and at 16,000 g, respectively. The plasma fraction (~

4 ml) was used to isolate ctDNA using the Maxwell RSC LV cfDNA extraction kit (Promega,

USA). The ctDNA was eluted with ultra-pure nucleic acid free water (Thermo Fisher Scien-

tific, USA), and stored at -80˚C. The purity of ctDNA was determined using Nanodrop

(Thermo Fisher Scientific, USA), whereas the concentration and integrity of ctDNA were

determined using Quant-iT dsDNA HS Kit (Thermo Fisher Scientific, USA) and DNA 1K Hi

Sens LabChip (Perkin Elmer, USA) respectively. Samples which passed quality assessment

were subjected to targeted NGS assay.

Analytical & clinical validation of the custom 15-gene panel

The regions of interest were amplified from 20 ng or 50 ng input ctDNA and the barcode/

adaptor was added to each library using Archer MBC Adapters. The libraries were constructed

using Archer custom 15-gene lung cancer panel kit according to the manufacturer’s instruc-

tions. The concentration of the constructed libraries was assessed using Kapa Library Quantifi-

cation Kits (Kapa Biosystems, USA) prior to sequencing. For each sequencing run, a range

of 12 pM to 16.5 pM libraries were pooled and sequenced on Illumina Miseq using Miseq

Reagent Kit V3 (600-cycle). The sequencing run were optimized to achieve the optimum target

specification of 1200–1400 k/mm2 clusters passing filter as per manufacturer’s instructions.

Following this, the mutations were identified using Archer Analysis software (version 6.2).

In order to evaluate the analytical performance of the 15-gene lung cancer panel, a set of 4

multiplex I ctDNA reference standards at different allellic frequencies (0.1%, 1%, 5% and

parental) from Horizon Discovery were used for detecting variants in the genes. The covered

gene variants were EGFR (p.L858R, p.delE746-A750, p.T790M, p.V769-D770insASV), KRAS
(p.G12D), NRAS (p.Q61K, p.A59T) and PIK3CA (p.E545K). In addition, Seraseq ctDNA

Mutation Mix v2 (1% allelic frequency) was used as reference material for detecting BRAF (p.

V600E), EGFR (p.E746_A750del, p.D770_N771insG, p.L858R, p.T790M), ERBB2 (p.

A775_G776insYVMA), KIT (p.D816V), KRAS (p.G12D), NRAS (p.Q61R), PDGFRA (p.

D842V, p.S566fs�6), PIK3CA (p.E545K, p.H1047R), and RET (p.M918T). The analytical per-

formance of the assay was determined by comparing the NGS results with known mutations of

the reference standards.

In order to evaluate the clinical performance of the 15-gene lung cancer panel for detecting

EGFR mutations, only treatment naïve advanced stage III or IV NSCLC patients who were

tested for tissue EGFR mutations [EGFR positive (n = 6), EGFR negative (n = 4)] and had

ctDNA samples collected within 1-month interval from tissue biopsy were subjected to tar-

geted NGS assay. The performance of the NGS assay in detecting EGFR mutations was deter-

mined by using tissue EGFR result as reference (orthogonal test).
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Bioinformatic analysis

The bioinformatics analysis was performed by using the proprietary Archer Analysis Software

Version 6.2 (Archer, USA). The fastq data were uploaded to the cloud and analyzed according

to the following settings: alternate observations (AO)� 5, unique alternate observations

(UAO)� 3, gnomAD allele frequency� 0.05, variants that have a consequence, variants with

an AF outlier p-value� 0.01, and mutant allelic frequency� 0.0055. The variants were con-

firmed manually with the Integrative Genomics Viewer [28].

Results

Patient characteristics

This pilot study has prospectively enrolled a total of 10 patients who were newly diagnosed

with advanced stage III or IV lung cancers, and had tested for tissue EGFR mutation. The tis-

sue EGFR mutations were confirmed via single-gene test [Cobas1 EGFR Mutation Test v2 or

Therascreen EGFR RGQ]. To evaluate the performance of the custom 15-gene ctDNA NGS

panel for detecting plasma EGFR mutation in clinical setting, peripheral blood samples were

collected from these 10 patients prior to the administration of tyrosine kinase inhibitor (EGFR
positive, n = 6), or other therapies (EGFR negative, n = 4). The demographic and clinicopatho-

logical characteristics of these patients are summarized in Table 1. Only 1 patient presented

with stage III lung cancer, whereas the other 9 patients were diagnosed with stage IV NSCLC.

The median age at diagnosis was 66 years (range 55 to 77 years). Majority of the patients were

male (n = 7). The average concentration of ctDNA extracted from 4 ml plasma samples was

3.38 ng/μl (range 0.48 ng/μl to 16.6 ng/μl). The amount of ctDNA (60 μl) recovered from each

4 ml sample ranged between 28.68 ng and 996 ng. Based on the amount of recovered ctDNA

profiles, 20 ng ctDNA was chosen as the initial input material for evaluation purposes in this

study, taking into consideration the need for repeat testing in a real-world setting.

Quality metrics of custom 15-gene ctDNA panel

A total of 4 sequencing runs were conducted to evaluate the performance of the custom

15-gene ctDNA panel for detecting the clinically relevant somatic mutations in liquid biopsies.

Our results (S1 Table) demonstrated that all the 4 runs did not meet the optimum target speci-

fication of 1200–1400 k/mm2 clusters passing filter. However, our results showed that

Table 1. Demographics and clinical characteristics of 10 lung cancer patients enrolled in this study.

Case Stage Smoker Age Gender Tissue EGFR ctDNA (ng/μl) Amount ctDNA (ng)

Lung 01 3 Yes 64 Male Negative 0.48 28.8

Lung 02 4 No 55 Male Deletion in Exon 19 1.39 83.4

Lung 03 4 Yes 66 Male Negative 0.63 37.8

Lung 04 (Rep1) 4 No 74 Female L858R 0.98 58.8

Lung 04 (Rep2) 1.15 69

Lung 05 4 No 60 Male L858R 1.9 114

Lung 06 4 No 66 Female Deletion in Exon 19 1.01 60.6

Lung 07 4 No 63 Female Deletion in Exon 19 0.85 51

Lung 08 4 Yes 72 Male L858R 0.93 55.8

Lung 09 4 - 77 Male Negative 11.3 678

Lung 10 4 No 68 Male Negative 16.6 996

Abbreviations: EGFR = epidermal growth factor receptor; ctDNA = circulating tumor DNA; Rep 1 = Replicate 1; Rep 2 = Replicate 2

https://doi.org/10.1371/journal.pone.0276161.t001
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increasing library loading concentration from 12 pM to 16.5 pM improved the cluster densities

and data output. The clusters passing filter of the four sequencing runs were 711 ± 14 k/mm2

(12 pM), 880 ± 20 k/mm2 (13 pM), 907 ± 45 k/mm2 (15 pM), and 1001 ± 23 k/mm2 (16.5 pM).

It is noteworthy that data quality met the expected threshold value in which>90% of bases

had Phred quality scores above 30.

The reference materials and clinical samples were pooled together in each run to maximize

the cost-effectiveness of the testing. A total of 8 samples was sequenced in the first 2 runs,

whereas 5 samples were sequenced in the third and fourth run to optimize the assay perfor-

mance. As shown in S1 Table, an average of 1.7 million mapped reads was recovered from the

first 2 runs (8 samples each), whereas an average of 3.3 million mapped reads was recovered in

the subsequent 2 runs (5 samples each). The number of mapped reads of each sample varied

between 950,516 and 4,604,442, with an average of 95% reads being mapped to target regions.

Analytical validation

The analytical performance of the assay was assessed in 4 independent experiments, and the

results are summarized in Figs 1 and 2. The details of the variants are listed in S2 Table. Our

analysis only focused on known variants covered by the custom panel. The first 2 runs used 20

ng Horizon Multiplex I ctDNA Reference Standards [allelic frequencies: 5% (n = 1); 1%

(n = 1); 0.1% (n = 1); parental (n = 2)], and Seraseq1ctDNA Mutation Mix v2 [allelic fre-

quency: 1% (n = 1)]. In the first run, a total of 12 pM pooled libraries was sequenced, and

yielded a total of 16,872,852 reads passing filter. The 15-gene ctDNA assay detected all the

known 8 variants in 5% and 1% Horizon ctDNA, but no variants in 0.1% Horizon ctDNA. All

the known variants were not detected in the duplicates of Horizon parental reference standard,

giving rise to 100% specificity of these regions. The assay only detected 10 out of 14 known var-

iants in Seraseq1ctDNA Mutation Mix v2. The four missing variants were EGFR (p.T790M),

EGFR (p.L858R), KIT (p.D816V), and PIK3CA (p.Glu545Lys). In the second run, the same set

Fig 1. Analytical validation of the Horizon Multiplex I ctDNA reference standards. Variants are listed vertically and samples are shown horizontally.

True positive (TP), false negative (FN), true negative (TN), and variants of uncertain significance are shown in green, red, orange and purple

respectively. Parental variants are shown in pink (allelic frequencies range 19%–32%). Run 1 and 2 included 20 ng Horizon 5%, 1%, 0.1% and duplicates

of parental ctDNA. Run 3 included 20 ng and 50 ng Horizon 0.1% ctDNA. Run 4 included 50 ng Horizon 0.1% ctDNA. Our results demonstrated that

the detection limit of the assay was at 1% allelic frequencies, and achieved 100% analytical sensitivity and 100% analytical specificity.

https://doi.org/10.1371/journal.pone.0276161.g001
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Fig 2. Analytical validation of the Seraseq1ctDNA Mutation Mix v2 reference standards. Variants with 1% allelic frequencies are listed

vertically and samples are shown horizontally. True positive (TP), false negative (FN), and variants of uncertain significance are shown in

green, red and purple respectively. Our results demonstrated that all the known variants were detectable when sequenced to at least ~1.7

million mapped reads.

https://doi.org/10.1371/journal.pone.0276161.g002
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of reference standards were analyzed by increasing the loading concentration to 13 pM, and

the run yielded a total of 20,317,542 reads passing filter. Increasing the loading concentration

significantly improved the sequencing output. Similar to the performance of first run, the

15-gene ctDNA panel detected all the known 8 variants in 5% and 1% Horizon ctDNA, but

failed to detect the presence of variants with 0.1% allelic frequencies. The known variants were

absent in the Horizon parental duplicates. The assay detected all the 14 known variants with

1% allelic frequencies in Seraseq1ctDNA Mutation Mix v2 when sequenced to ~1.7 million

mapped reads.

The input of Horizon 0.1% ctDNA was increased to 50 ng in the third and fourth runs to

optimize the detection limit of the assay. In parallel, 20 ng Horizon 0.1% was used in the third

run for comparison purposes. The third run was loaded with 15 pM pooled libraries and yielded

21,028,976 reads passing filter. The fourth run was loaded with 16.5 pM and yielded 23,341,198

reads passing filter. Notably, approximately 1.5 million to 2.4 million mapped reads were gener-

ated from 20ng of 0.1% Horizon ctDNA, whereas approximately 3.8 million to 4.6 million

mapped reads were generated from 50 ng of 0.1% Horizon ctDNA. Our results suggested that

the increase of input and throughput of 0.1% Horizon ctDNA did not improve the detection

limit of the assay whereby all the known variants in 0.1% Horizon ctDNA were not detected.

Our analysis consistently detected four variants in the Horizon Multiplex I cfDNA Refer-

ence Standards which were of parental cell line origin. The allelic frequencies were ~30% in

BRAF p.Val600Glu, ~20% in EGFR p.Gly719Ser, ~25% in NTRK1 p.Leu585CysfsTer73, and

~23% in PIK3CA p.His1047Arg. In addition, the combined analysis of these 4 independent

runs revealed that this panel may not be suitable for reporting the following variants which are

randomly detected in the samples, including KRAS (p.Ile93Met, p.Ser65Asn, p.

Asp69ThrfsTer4, p.Thr87Ile, p.Phe78LeufsTer9, p.Glu76Gly, p.Glu76Ala, p.Ala59Thr), NRAS
(p.Ser65Asn), PDGFRA (p.Leu723TyrfsTer12), and ROS1 (p.Lys1983Arg, p.Val2170Ala).

Overall, our analysis demonstrated that the detection limit of the custom 15-gene ctDNA

assay was at 1% allelic frequency. The assay achieved 100% analytical sensitivity and 100%

specificity when 20 ng ctDNA was sequenced to at least ~1.7 million mapped reads.

Clinical validation

To determine the concordance between plasma and tissue EGFR variants, the peripheral blood

samples were taken within 1-month interval from the date of the tissue biopsies. A total of 10

patients with newly diagnosed advanced stage III or IV lung cancer were recruited into this

study. These clinical samples were sequenced concurrently with analytical reference standards

in 4 independent runs. A total of 4 clinical samples was tested by using 20 ng input, whereas 7

samples were tested by using 50 ng input ctDNA. As shown in S1 Table, an average of ~2.7

million mapped reads were recovered from the clinical samples [range 1,354,134 to 3,628,524

mapped reads].

The clinical performance of the assay was assessed in 4 independent experiments, and the

results are summarized in Fig 3. The details of the variants are listed in S2 Table. In compari-

son with tissue EGFR, the 15-gene ctDNA assay detected 5 out of 6 known positive variants,

and 4 out of 4 known negative variants, giving rise to 83.3% clinical sensitivity and 100% clini-

cal specificity. The discordant result was observed in Lung 04 which harbored EGFR p.L858R

mutation. The circulating EGFR variant remains undetectable even though the experiment on

Lung 04 was repeated by increasing the ctDNA input from 20 ng which yielded 1,778,994

mapped reads to 50 ng which yielded 3,053,604 mapped reads. We postulated that the discor-

dance could be attributed to the low abundance of circulating EGFR mutation during sampling

time, and was below the detection limit of the assay.
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Other than known tissue EGFR variants, the assay also detected additional variants in these

10 clinical samples. BRAF p.Val600Glu was found in Lung 01 and Lung 02, while KRAS p.

Gly12Cys was found in Lung 09. EGFR p.Lys754Gln and ERBB2 p.Ser310Phe were found in

Lung 06. KRAS p.Ser65Asn was detected in Lung 01, duplicates of Lung 04 and Lung 05. Also,

KRAS p.Glu76Gly and NRAS p.Ser65Asn were detected in Lung 04.

Overall, our analysis demonstrated that the custom 15-gene ctDNA panel achieved 83.3%

clinical sensitivity and 100% specificity for detecting EGFR variants. The usefulness of the

panel in detecting other variants remains unknown and confirmation via orthogonal method

is required for low confidence variants which were randomly detected in the tested samples.

Discussion

With the list of actionable mutations for solid cancers steadily expanding, the development of

NGS panel for the simultaneous analysis of actionable targets in liquid biopsy is desirable. In

year 2020, the approval of Guardant360 CDx test (Guardant Health) and FoundationOne Liq-

uid CDx test (Foundation Medicine, Inc.) as the first two liquid biopsy NGS tests for advanced

solid cancers by the FDA marked a new breakthrough in the field of non-invasive molecular

testing. Over the years, numerous studies have been conducted to evaluate the performance of

custom NGS-based ctDNA panels, with some showing promising results. For instance, Digital

Sequencing™ demonstrated analytical sensitivity down to 0.1% mutant allele fraction, and clin-

ical sensitivity and specificity of 85%, and 99.6% respectively as compared to tissue-based NGS

[29]. Firefly assay demonstrated superior sensitivity and specificity with a 98.89% detection

rate at an allele frequency of 0.2% [30]. Oncomine™ Lung cell-free DNA Assay (OLcfA) NGS

panel has been shown to be effective in detecting mutations in NSCLC patients with a detec-

tion limit of 0.1% [31]. In this proof-of-concept pilot study, we aim to develop and validate a

custom 15-gene ctDNA NGS panel for detecting single nucleotide variants and small indels in

lung cancer, with primary focus on EGFR mutation analysis in NSCLC. The panel harnessed

molecular barcoding technology which aims to differentiate the true variants from PCR dupli-

cates and arising artifacts by taking into consideration unique DNA fragments counts [32, 33].

EGFR mutations represent the most commonly detected genetic alteration in NSCLC, with

a prevalence range of 40–60% among Asians [34–36]. NSCLC patients who received epidermal

growth factor receptor tyrosine kinase inhibitors (TKI) demonstrated excellent responses and

achieved longer progression free survival [37, 38]. Testing of tissue EGFR mutations is the gold

standard to guide TKI treatment in NSCLC. In the event that tissue sample is inadequate or

Fig 3. Clinical validation of the 10 patients with newly diagnosed advanced stage III or stage IV lung cancer. Variants are listed vertically and

samples are shown horizontally. Known EGFR true positive (TP), true negative (TN) and false negative (FN) are shown in green, orange and red

respectively. Comparison with tissue EGFR demonstrated that the 15-gene ctDNA panel achieved 83.3% clinical sensitivity and 100% clinical specificity.

In addition to known EGFR mutation status, the NGS assay detected additional variants which are shown in blue, and confirmation with orthogonal

method is warranted to confirm its accuracy.

https://doi.org/10.1371/journal.pone.0276161.g003
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inaccessible, plasma EGFR test is the prioritized option. Clinically, Cobas EGFR Mutation Test

v2, and Therascreen1 EGFR Plasma RGQ are the two FDA approved real-time PCR liquid

biopsy companion diagnostic assay for the detection of plasma EGFR mutations in NSCLC.

The reported detection limit of Cobas and Therascreen for most common EGFR mutations

ranged between 1.3–13.4%, and 0.81–17.5% respectively. Subsequently, droplet digital PCR

with lower detection limit (0.1% allelic frequency) has been developed and widely used as a

monitoring tool for patients receiving EGFR inhibitors and enabling rapid switch to third-gen-

eration TKI in patients who have acquired the T790M mutation [39–41]. Overall, our custom

NGS panel showed comparable performance to the real time PCR based assays (Cobas and

Therascreen) and achieved 100% analytical sensitivity and specificity for detecting EGFR

mutations with at least 1% allelic frequencies. However, the assay is suboptimal when com-

pared to droplet digital PCR or NGS-based assays which can achieve detection limits of below

1% [18, 31, 41].

Clinical evaluation of EGFR mutations showed that our NGS assay achieved 83.3% sensitiv-

ity and 100% specificity, in which EGFR p.L858R was missed in 1 out of 6 confirmed cases. We

speculate that the discordance could be attributed to several inherent limitations of ctDNA,

such as short half-life of<1.5 hours and low abundance of ctDNA relative to normal cell free

DNA. Also, technical challenges such as the amount of input ctDNA, sequencing reads depth,

and bioinformatics algorithms could be the key extrinsic factors that affect the assay perfor-

mance [11, 13, 42, 43]. An extension study is required to further optimize and assess the clini-

cal utility of this panel.

In addition to EGFR, we detected several other mutations, including BRAF, ERBB2, NRAS,

and KRAS in 6 out of 10 clinical samples. We recognized the lack of balance ctDNA for further

confirmation testing via orthogonal methods in the present study. Nonetheless, the assay can

detect all of the known mutations in the reference samples when adequately sequenced. Increas-

ing evidences have shown that the co-existence of EGFR with KRAS, BRAF, and ERBB2 are not

uncommon, and were associated with resistance to EGFR inhibitors and poorer survival [44–52].

These concomitant mutations were detected in nearly 70% of EGFR positive cases of this study

[BRAF (1/6); KRAS (2/6), ERBB2 (1/6)], and their therapeutic impacts remain to be investigated.

Multigene testing is advantageous in providing a more comprehensive genetic information for

guiding treatment decision. BRAF, ERBB2 and RET have molecular targeted drugs available for

use as therapy. Therefore in 30% of patients, liquid biopsy identified additional therapies that

would not have been detected on standard molecular testing. Within this context, Lung 06 may

be more amenable to afatinib, evidenced by the success of afatinib in treating metastatic lung ade-

nocarcinoma harboring EGFR (p.L858R) and ERBB2 (p.S310F) co-mutations [53]. Lung 02

could be treated with BRAF inhibitors as a rescue regimen to EGFR inhibitors, hence broadening

the therapeutic options. Multigene panel testing can therefore potentially provide a powerful tool

in delivering precision oncology, especially in patients with refractory diseases.

Conclusion

Overall, our analysis demonstrated that the limit of detection for the 15-gene ctDNA NGS

panel for EGFR variants was at 1%, and is comparable to other PCR based methods, including

Cobas1 EGFR Mutation Test v2 and Therascreen EGFR plasma RGQ. The assay achieved

100% analytical sensitivity and specificity when sequenced to at least ~1.7 million mapped

reads. The clinical sensitivity and specificity of the assay for detecting EGFR mutations were

83.3% and 100% respectively. Our preliminary analysis suggests that the custom NGS assay is

of good performance. Extension studies are warranted in order to optimize the assay and to

include validation of other candidate gene mutations.
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